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Optical bistability and tristability in nonlinear metal Õdielectric composite media
of nonspherical particles
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Based on a spectral representation method and a self-consistent mean field theory, we present a general
framework to investigate the optical bistability in a nonlinear two-phase composite, where spheroidal metallic
inclusions are randomly oriented and embedded in a dielectric host. The relation between the spatial average of
the local field squared̂uEu2& i ( i 51,2) and the external field squaredE0

2 is obtainable through the spectral
density function which is predicted from our recently derived Maxwell-Garnett approximation. In addition to
single optical bistability~OB!, the appearance of double OB and optical tristability~OT! is reported, and the
corresponding phase diagram is given. We find that the regions of the single OB, the double OB, and the OT
are dependent on the shape and volume fraction of the metallic particles. Our method allows us to take one step
forward to study some field-dependent effective optical properties, such as the refractive index, extinction
coefficient as well as reflectance. The general framework is also applied to investigate exactly the solvable
composites consisting of nonlinear spheroidal inclusions and linear dielectric host in the dilute limit. To this
end, the present method is shown to be in excellent agreement with the exact solution. In addition, the present
method predicts a larger threshold intensity than the variational approach.
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I. INTRODUCTION

Because of its potential applications for optical logic, o
tical memory element, and optical switching devices,
phenomenon of intrinsic optical bistability in composite m
dia has received much attention@1–4#. To obtain the optical
bistable behavior, the composite materials are usually m
of a dielectric host and metallic~or semiconductor! granular
inclusions, whose dielectric constant contains a negative
part and a small imaginary part. Moreover, the componen~s!
must possess nonlinear dielectric responses. Proposals
been put forward to decrease the intensity threshold for
bistability by exploiting the field enhancement produced
the surface plasmon resonance of the composite m
@2–4#.

In general, the problem of calculating the effective no
linear properties in nonlinear composite materials is qu
intractable. Thus, the investigations on optical bistable
havior were mainly limited to some exactly solvable micr
structures such as those low density mixtures, parallel sl
and so on. In previous works@5,6#, a variational approach
was developed to investigate the bistable behavior in
weakly nonlinear composite medium. When the applied
tensityuE0u2 is strong, the dielectric constant of the nonline
component will strongly be relevant to the local field with
it. Therefore, the weak field nonlinearity is not valid an
more.

In experiment, Neuendorfet al. @7# reported the observa
tion of the bistability of nanometer-sized spherical CdS p
ticles coated with silver. Motivated by this observation, Yu
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and Yu @8# studied the nonlinear composites of coat
spheres, and obtained the optimal conditions for the bista
operation by adjusting the thickness of coatings. On the o
hand, it was shown that the threshold intensity for the opti
bistability can also be optimized by the suitable adjustm
of the particle shape of ellipsoidal inclusions@4,9,10#. How-
ever, as we know, the ellipsoidal inclusions were assume
be randomly distributed but oriented with respect to one
other, and the theoretical results were only valid for a p
ticular orientation of the particles.

For realistic composites, the individual granular inclusi
is not perfectly aligned and even randomly oriented. We h
shown that the effective optical nonlinearity of the weak
nonlinear composite system of ellipsoidal particles orien
in the same direction@11# is quite different from that of ran-
domly oriented ellipsoidal particles@12#. In this paper, based
on a self-consistent mean field approximation@13–15# in
combination with a spectral representation method@16#, we
will put forth a general framework, in an attempt to inves
gate the optical bistable behavior of nonlinear met
dielectric composite media, in which randomly orient
spheroidal particles are distributed in the dielectric host
the presence of a strong external applied electric field.
detail, we will perform numerical calculations with a focu
on the relation between the average of the local field squa
inside the metallic inclusionŝuEu2&1 ~instead of̂ uEu&1 @17#!
and the external field intensityE0

2. To our interest, the ap
pearance of double bistability and tristability in contrast
single bistability will be shown, and the phase diagram b
tween them is given. Moreover, our method provides an e
way to study the effective nonlinear optical properties a
function of the external field, such as the refractive ind
extinction coefficient, and reflectance. For increasingE0,
©2003 The American Physical Society01-1
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such physical parameters can exhibit quite complex beh
iors.

II. THEORY

A. Spectral representation theory and self-consistent mean
field approximation

Let us first consider a linear two-constituent compos
consisting of one component of dielectric constante1 and
volume fraction f, and the other component ofe2 and 1
2 f .

In the presence of a uniform external applied electric fi
E0[E0ez , with ez being the vector along thez axis, the
electrostatic potential in the quasistatic limit obeys t
Laplace equation:

“•F S 12
1

s
h~r ! D“f~r !G50, ~1!

with appropriate boundary conditions, wheres[e2 /(e2
2e1) is the material parameter andh(r ) is the characteristic
step function~which is equal to unity in component 1 an
zero in component 2). The electric potentialf(r ) can be
solved formally

f~r !52E0z1
1

sE dr 8h~r 8!“8G~r2r 8!•“f~r 8!, ~2!

where G(r2r 8)[1/(4pur 82r u) is the free-space Green
function.

In order to obtain the solution of Eq.~1!, we introduce an

integral-differential Hermitian operatorĜ, which satisfies

Ĝf~r ![E dr 8h~r 8!“8G~r 82r !•“8f~r 8!, ~3!

and the corresponding inner product

^fuc&5E drh~r !“f* •“c. ~4!

Then Eq.~2! can be simplified to

f~r !52E0z1
1

s
Ĝf~r !. ~5!

Let sn andfn(r ) be thenth eigenfunction and eigenvalu

of the Ĝ operator. The potentialf~r ! can be expanded in
series of eigenfunctions,

f~r !52(
n

s^nuz&
s2sn

fn~r !E0 in component 1 ~6!

and

f~r !52E0z2(
n

sn^nuz&
s2sn

fn~r !E0 in component 2.

~7!
06660
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Within the Bergman-Milton spectral representation@16#,
the effective dielectric constantee can be written as

ee5
^Dz&
E0

5
21

E0VE dre2F12
1

s
h~r !G~ez•“f!

5e2F12(
n

f n

s2sn
G , ~8!

where ^¯& denotes the spatial average, while the polessn
and residuesf n[u^nuz&u2 are all confined to the real region
0<sn , f n<1 with (nf n51.

When the operatorĜ has a continuous spectrum, Eq.~8!
should be replaced with an integral form

ee5e2F12E m~x!

s2x
dxG , ~9!

where the spectral density functionm(x) is obtained through
a limiting process,

m~x!5 lim
j→01

1

p
ImF ee

e2
~s5x1 i j!G . ~10!

Within the spectral representation, the spatial average of
local field squared in component 1 is found to be@16,18#

f ^uE2u&15
1

VE1
dr uEu25

1

VE1
dr“f* •“f

5
1

V (
n

(
m

usu2^zun&^muz&

~s* 2sn!~s2sm!
E

1
dr“fn* •“fmE0

2

5(
n

usu2f n

us2snu2
E0

2 . ~11!

Again, for a continuous spectrum, we have

f ^uEu2&15E
0

1 usu2m~x!

us2xu2
dxE0

2 . ~12!

Similarly, the spatial average of the local field squared ins
component 2 can be expressed as@18#

~12 f !^uEu2&25F12E
0

1 ~ usu22x!m~x!

us2xu2
dxGE0

2 . ~13!

Equations~12! and~13! are derived under the assumptio
that both components are linear. In the present paper,
will be generalized to treat the composites where the t
components are both nonlinear, and have the local cons
tive relation between the electric displacementD and the
field E as

D5e iE1x i uEu2E5~e i1x i uEu2!E. ~14!

It is worth remarking that, in previous works@5,11,12,18#,
the relation betweenD and E is weakly nonlinear, i.e., the
1-2
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contribution of the second~nonlinear! part in the right-hand
side of Eq.~14! is less than that of the first~linear! part. As
an extension, this limit is no longer necessary in the pres
paper.

To observe the optical bistable behavior, we must so
for the local field in both components. Because of the di
culty in finding the local field exactly, we resort to the me
field approximation, which amounts to approximating t
nonlinear component with dielectric property@13–15#:

ẽ i5e i1x i uEu2'e i1x i^uEu2& i . ~15!

For two-component nonlinear composite media, Eqs.~12!
and ~13! are then modified as

f ^uEu2&15E
0

1 us̃u2m~x!

us̃2xu2
dxE0

2 , ~16!

~12 f !^uEu2&25F12E
0

1~ us̃u22x!m~x!

us̃2xu2
dxGE0

2 , ~17!

where s̃[ẽ2 /( ẽ22 ẽ1). Note that^uEu2& i in Eqs. ~16! and
~17! is the average of the local field squared inside nonlin
componenti (51,2). In fact, Eqs.~16! and ~17! have been
used to investigate the effective nonlinear response
strongly nonlinear composite media, where the linear par
Eq. ~14! vanishes@19#, and applied to the study of nonlinea
alternating current response of colloidal suspensions@20#,
where the linear and nonlinear parts in Eq.~15! are compa-
rable. In this paper, we shall adopt them to study the opt
bistability of the nonlinear composite media. Fortunately
can self-consistently be solved from a couple of equati
@Eqs. ~16! and ~17!#, as long as spectral density functio
m(x) is given. As we know,m(x) describes the geometri
information of the composite under consideration. Hen
once a certain microstructure is given, its correspond
m(x) can be calculated.

B. Self-consistent mean field approximation
for Maxwell-Garnett type microstructures

We shall investigate the optical bistable behavior in a n
linear two-phase composite, in which nonlinear spheroi
metallic granular inclusions of volume fractionf are ran-
domly embedded in a nonlinear dielectric host. All the sp
roidal particles have different sizes, but are assumed to e
in the form of the same shape which is characterized
depolarization factorsLz along the z axis and Lxy[(1
2Lz)/2 along thex ~or y) axis. Since the axes of the sph
roidal particles are randomly distributed in space, the eff
tive nonlinear response will become isotropic.

This kind of microgeometric structure admits the follow
ing spectral density function in terms of a sum of twod
functions@12#,

m~x!5F1d~x2s1!1F2d~x2s2!, ~18!

where the poless1 ands2 are given by
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s15 1
12 @322 f 13Lz

1A~2 f 2323Lz!
2272~12 f !~12Lz!Lz#, ~19!

s25 1
12 @322 f 13Lz

2A~2 f 2323Lz!
2272~12 f !~12Lz!Lz#, ~20!

and the corresponding residuesF1 andF2 have the form

F15
f

6

113Lz26s1

s22s1
and F25

f

6

113Lz26s2

s12s2
.

~21!

Note that the two residues satisfy the sum ruleF11F25 f ,
as expected.

The substitution of Eq.~18! into Eqs.~16! and~17! yields

f ^uEu2&15F us̃u2

us̃2s1u2
F11

us̃u2

us̃2s2u2
F2GE0

2 , ~22!

~12 f !^uEu2&25F12
us̃u22s1

us̃2s1u2
F12

us̃u22s2

us̃2s2u2
F2GE0

2 .

~23!

Next, Eqs.~22! and ~23! can readily be solved in a self
consistent manner for̂uEu2&1 and ^uEu2&2 as a function of
E0

2, and hence the desired optical bistable behavior is
tained.

III. NUMERICAL RESULTS FOR OUTPUT INTENSITY
„ŠzEz2

‹1… AGAINST INPUT INTENSITY „E0
2
…

We are in a position to perform numerical calculations
an attempt to study the features of nonlinear optical prop
ties. The linear optical parameters are set to bee1527.1
10.22i and e252.0 @9#, which leads tos'0.2210.005i .
For simplicity, we shall concentrate on two typical cases: o
is the composite system composed of nonlinear metallic
clusions with x151028 esu and linear dielectric hos
~namely,x250); the other is the system consisting of line
metallic inclusions~i.e., x150) and nonlinear dielectric hos
with x251028 esu. In fact, our formulas hold for a mor
complicated case, such as, with both components being
linear.

To observe the optical bistability, we should calcula
^uEu2& i in the presence of an external intensityE0

2 . However,
we find that, to get the input-output curves, it is easier
obtain the values of the input intensity (E0

2) as a function of
output intensity (̂uEu2& i). For example, for the composit
system with a linear dielectric host~i.e., x250), asE0

2 is
given, Eq. ~16! @or Eq. ~22!# is a nonlinear equation fo
^uEu2&1 as a function ofE0

2; however, aŝuEu2&1 is given, it is
quite easy to calculateE0

2 directly from Eq. ~16! @or Eq.
~22!#. For the composite system with a linear metallic incl
sion (x150), we can take one step forward to obtain^uEu2&2

as a function ofE0
2 from Eq. ~17! @or Eq. ~23!#. Next, we

calculate^uEu2&1 as a function ofE0
2 by using Eq.~16! @or

Eq. ~22!#.
1-3
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GAO, GU, AND LI PHYSICAL REVIEW E 68, 066601 ~2003!
A^uEu2&1 is plotted against the applied fieldE0 for x1
51028 esu andx250 ~Fig. 1!, and for x150 and x2
51028 esu~Fig. 2!. From the two figures, we find that th
curves are strongly dependent on the depolarization fa
~or particle shape! of the inclusions, whereas weakly depe
dent on the volume fraction. The hysteresis loops for^uEu2& i
appear always for allLz . In the dilute limit, we note that the
curves for the case ofx251028 esu @Fig. 2~a!# are quite
different from those for the case ofx151028 esu@Fig. 1~a!#.
For instance, just after the optical hysteresis,A^uEu2&1 de-
creases first and then increases@Fig. 2~a!#, while A^uEu2&1
increases monotonically for increasingE0 @Fig. 1~a!#. From
Figs. 1 and 2, three typical behaviors are observed; they

FIG. 1. A^uEu2&1 vs the external fieldE0 for x151028 esu and
x250.

FIG. 2. Same as Fig. 1, but forx150 andx251028 esu.
06660
or

re

~1! single optical bistability~OB!, ~2! double OB, and~3!
optical tristability~OT!, as also shown in Fig. 3. To the be
of our knowledge, the behaviors of the double OB and
OT are predicted herein for the first time. For these t
behaviors, when the applied fieldE0 increases over the firs
upper threshold fieldE0,U1, the discontinuous jump of the
local field takes place from the lower branch to the midd
branch; asE0 further increases up to the second thresh
field E0,U2, we find the other discontinuous jump from th
middle branch to the upper branch. In contrast, afterE0 is
decreased to the lower threshold fieldE0,L2 , A^uEu2&1 can
not decrease simultaneously, but jump down to the mid
branch and then follow it untilE0 is decreased down to th
other lower threshold fieldE0,L1. The difference between th
double bistability and the tristability is in the following. Fo
a given E0 , A^uEu2&1 has three real roots within the tw
electric field domains, and hence the desired double bista
ity. However, it has five real roots in one field region, a
hence the desired tristability.

In Fig. 4, we investigate the phase diagram of the sin
bistability, the double bistability, and the tristability in a
Lz-f plot. The phase diagram is mainly occupied by sing
bistability ~see region 1,Lz.0.55, Lz,0.22, sorLz51/3
around!. In particular, the tristability takes place in region 3
which includes two parts, one is 0.25,Lz,0.32 for f
,0.15 and the other is 0.35,Lz,0.42 for f ,0.08. For
small f, gradually increasingLz leads to all possible transi
tions between the single OB, the double OB, and the O
However, for larger volume fractions than 0.15, only o
kind of phase transition appears, namely, the transition fr

FIG. 3. Three typical behaviors in nonlinear composites
f 50.01 andx151028 esu. They are, respectively,~1! the single
bistability for Lz51/3, ~2! the double bistability forLz50.5, and
~3! The tristability for Lz50.4. The negative slop~dashed lines!
represents the unsteady state. The dashed lines indicate that
field, ^uEu2&1 may admit three or five real roots, signifying th
bistable or the tristable behaviors.
1-4
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OPTICAL BISTABILITY AND TRISTABILITY IN . . . PHYSICAL REVIEW E 68, 066601 ~2003!
the single OB to the double OB, or from the double OB
the single OB.

To explain qualitatively the above-mentioned pheno
enon in the phase diagram, we plot the poles (s1 ands2) and
the corresponding residues (F1 andF2) as a function of the
depolarization factor (Lz) ~Fig. 5!. For simplicity, we discuss
the case where the metallic inclusions are nonlinear only

It is found that, at a given volume fraction, the real part
s @Re(s)5Ree2 /(e22e1)'0.22# is always smaller thans1,
but larger thans2 for 0,Lz<0.22 or Lz>0.54. In this re-
gion, as Re(s̃)5Re@e2 /(e22e12x1uEu2)# increases gradu
ally with the increase ofE0, it becomes near tos1 but far
away from s2. As a result, the second part of Eq.~22! is
much less than the first part, and thus its contribution
^uEu2&1 can be omitted. In this sense, Eq.~22! will becomes
a cubic equation for̂uEu2&1, which signifies a single optica
bistable behavior. In the region 0.24<Lz<0.48 ~dependent
on volume fractions!, both poless1 and s2 are larger than
Res̃. Let us discuss the case of the poles which are w
separated from each other~e.g., f 50.2). As Re(s̃) becomes
close tos2 for increasingE0, the first optical bistability ap-
pears. Furthermore, increasingE0 leads to Re(s̃)'s1, and
thus the second optical bistability is observed. However,
Lz'1/3 ~spherical particles!, we will have eithers1's2 for
small volume fractions orF1→0 for large volume fractions
As a result, only a single bistable behavior exists. To
interest, once the poles (s1 ands2) are neither too close no
too far, both contributions froms1 and s2 become compa-
rable. In this situation, Eq.~22! is a fifth-order polynomial

FIG. 4. Phase diagram for 1~single bistability!, 2 ~double bista-
bility !, and 3 ~tristability! regions is shown for~a! the nonlinear
metal component withx151028 esu and~b! the nonlinear dielec-
tric component withx251028 esu.
06660
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equation for^uEu2&1, which produces five real roots for
given applied fieldE0, thus signifying the tristability.

In Fig. 6, we plot the maximum threshold fieldE0,M
(E0,M5E0,U for the single OB, and5E0,U2 for the double
OB and the OT! againstLz for f 50.05. It is shown thatE0,M
for the nonlinear dielectric host is much larger than the o
for the nonlinear metallic inclusions. This phenomenon
clearly observed, especially forLz.0.5. Consequently, we
conclude that, nonlinear metallic inclusions are more fav
able to reduce the threshold field than nonlinear dielec
hosts, as in accord with previous observations@9#.

FIG. 5. Poless1 ,s2 and corresponding residuesF1 ,F2 vs Lz for
various f 50.05, 0.12, and 0.20.

FIG. 6. Maximal threshold fieldE0,M vs Lz for f 50.05, x1

50, andx251028 esu.
1-5
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IV. NUMERICAL RESULTS FOR NONLINEAR
OPTICAL PROPERTIES

Based on our method, it is straightforward to calculate
effective dielectric constant of nonlinear composite media
a function of the external applied fieldE0. To do so, let’s
consider Maxwell-Garnett type microstructures. Substitut
Eq. ~18! into Eq.~9!, we obtain the effective linear dielectri
constant (ee) within the spectral representation@12#:

ee5e2F12
F1

s2s1
2

F2

s2s2
G . ~24!

For the nonlinear composite medium, it is supposed that
effective dielectric constantẽe has the same form asee , i.e.,

ẽe5 ẽ2F12
F1

s̃2s1

2
F2

s̃2s2
G . ~25!

Since bothẽ2 , ẽ1 ~included ins̃) is field dependent,ẽe can
be changed by adjusting applied fieldE0. Moreover, it has
been shown that the variation ofẽe becomes most strong i
the vicinity of the resonant region, where Re(s̃) 5s1 ~or s2)
is accompanied with small Im(s̃) @21#.

Both the effective complex refractive index of nonline
compositesñ[n1 ik ~where n and k are, respectively, the
refractive index and the extinction coefficient! and the reflec-
tance at normal incidence can be calculated from the follo
ing equations:

n5S Re~ ẽe!1A@Re~ ẽe!#
21@ Im~ ẽe!#

2

2 D 1/2

, ~26!

k5S 2Re~ ẽe!1A@Re~ ẽe!#
21@ Im~ ẽe!#

2

2 D 1/2

, ~27!

R5UAẽe21

Aẽe11
U2

. ~28!

In Figs. 7–9,n, k, andR are plotted as a function ofE0,
respectively. For the sake of simplicity, we show the nume
cal results for nonlinear composite media wherex150 and
x251028 esu only ~in fact, for the other case wherex1
51028 esu andx250, similar behavior can be found!. It is
evident that hysteresis loops~shown in Fig. 10! for these
nonlinear optical properties occur, which implies that m
tiple states do exist for the nonlinear composite media, c
responding to different local field distributions~Fig. 2!. As a
matter of fact, these different states indicate quite differ
physical properties that the composites possess. For exam
as far asR is concerned, atE053000 statvolt/cm,Lz50.4
and f 50.2, max(R)/min(R)'9. In view of possible techno
logical applications, this finding is expected to be very u
ful. Also, we note thatR exhibits similar behavior asn ~k! for
small ~large! f. From these figures, we conclude that obla
spheroidal metallic inclusions with small volume fractio
are able to play an important role in getting a broader bis
bility domain.
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V. DILUTE LIMIT CASE AND COMPARISON
WITH THE VARIATIONAL APPROACH

In what follows, we shall discuss a certain compos
which contains nonlinear randomly-oriented spheroids e
bedded in a linear dielectric host, so that we could dem
strate the validity of our method. The composite under c
sideration is in the dilute limit, and subject to an extern
applied fieldE0 along the direction of thez axis. It is known
that the local field inside the spheroids is uniform, even
nonlinear inclusions@22#.

Without loss of generality, we take the principal axis
the spheroid to be oriented at angleu to the z axis. In this
case, the local fieldE1 inside the nonlinear spheroid is un

FIG. 7. The refractive indexn vs E0 for x150 and x2

51028 esu.

FIG. 8. Similar to Fig. 6, but for extinction coefficientk vs E0.
1-6
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form as well, and has the form

E15
e2

e21Lz~ ẽ12e2!
E0 cosuez

1
e2

e21Lxy~ ẽ12e2!
E0 sinu cosfex

1
e2

e21Lxy~ ẽ12e2!
E0 sinu sinfey , ~29!

with ẽ1[e11x1uEu2.
Then, the local field squareduEu1

2[E1* •E1 is given by

uEu1
25FU e2

e21Lz~ ẽ12e2!
U2

cos2u

1U e2

e21Lxy~ ẽ12e2!
U2

sin2uGE0
2 . ~30!

In the light of the rule

^ f ~u,f!&5
1

4pE0

2pE
0

2p

f ~u,f!sinududf, ~31!

the spatial average of the local field squared within the sp
roidal particles is determined by

^uEu2&15F1

3U e2

e21Lz~ ẽ12e2!
U2

1
2

3U e2

e21Lxy~ ẽ12e2!
U2GE0

2 .

~32!

Note Eq.~32! is exact, and it can be applied to investiga
the optical bistability for a dilute suspension of random
oriented spheroidal particles in a linear host.

FIG. 9. Similar to Fig. 6, but for the reflectance at normal in
denceR vs E0.
06660
e-

By using our method, in the dilute limit~namely, f
→0), Eqs.~19! and ~20! reduce to

s15Lz and s25Lxy . ~33!

In this case, the residuesF1 andF2 @Eq. ~21!# become

F15
f

3
and F25

2 f

3
. ~34!

Then, the substitution of Eqs.~33! and ~34! into Eq. ~22!
yields the same formula as Eq.~32!.

Now, we are in a position to study the optical bistabili
of the composite media composed oflinear spherical inclu-
sions, which are embedded in anonlineardielectric host. To
compare our method with the variational approach, we
the relevant parameters to be the same as those used in
@5#. To this end, our method predicts the onset of the bista
behavior withE0,onset'726 statvolt/cm~onset applied field!
at f '0.0035. This onset field is related to the threshold
tensity I'1.233108 W/cm2, which is of about two orders
larger thanI 51.43106 W/cm2 predicted by the variationa
approach. This discrepancy should result from the fact t
the present method determines self-consistently^uEu2&,

FIG. 10. Typical hysteresis loops forn, k, andR at f 50.1, x1

50, andx251028 esu.
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rather than̂ uEu&, while the latter (̂uEu&) is determined by
the variational approach@5#, without the use of self-
consistency.

VI. DISCUSSION AND CONCLUSION

In this work, we have developed a general method in
attempt to study the optical bistability in two-phase nonline
composite materials. This method allows us to solve s
consistently the relation between the average of the lo
field squared̂ uEu2& i within nonlinear componenti and the
external field squaredE0

2, without regarding the nonlinea
properties as a small perturbation to the linear behavior
this connection, it is worth mentioning an alternative wo
@17#, in which the authors considered the intrinsic optic
bistability by using the spectral form between^E&1 andE0.
To determine ^E&1, the rough approximation^uEu2&1
'uE1u2 was adopted. Furthermore, the formula in Ref.@17#
was only valid to the composites with a single nonline
component.

In particular, our general framework has been illustra
in composite media consisting of nonlinear metallic inc
sions randomly oriented and embedded in a nonlinear die
tric host. We find that the optical bistable behavior is dep
dent both on the volume fraction and the inclusion sha
Above all, new phenomena such as the double bistability
the tristability are reported in the above-mentioned nonlin
composites. In the tristability region, the composites can
.

,

n-

06660
n
r
f-
al

In

l

r

d
-
c-
-

e.
d
r
-

hibit three different physical states for a givenE0, and thus
this raises the interesting question of how one state is to
selected over another, and how one can switch the sys
between these different states@23#.

In addition, since the materials have the advantage o
low absorption coefficient@24#, the metallic particles may be
packed up to a large volume fraction. In this case, dipo
dipole interactions should be taken into account. In this
gard, the Shalaev-Sarychev theory@25# is expected to help.
Work is in progress along this direction, and will be report
elsewhere.

To sum up, we have generalized our recently deriv
Maxwell-Garnett approximation to investigate the optical
stability of nonlinear spherical inclusions in a nonlinear d
electric host@12,26#. To our great interest, double bistability
or tristability, can be observed by adjusting the appropri
parameters.
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